Physics 137B: The Structure of the Proton

e Studing the Proton Structure
e Electromagnetic Form Factor
e Elastice ep scattering

e Deep Inelastic Scattering



The Proton is Not a Point-like Particle

e Quark model says p consists of 3 quarks (but are they real?)

e Gyromagnetic moment gp = 5.586 is far from the Dirac value of 2
that holds for pointlike spin-% particles

e Size of nucleus consistent with nucleons of size ~ 0.8 fm

To study structure of the proton, will use scattering techniques

Similar idea to Rutherford’s initial discover of the nucleus



Scattering of Pointlike Particles

e Rutherford Scattering (spinless electron scattering from a static point

charge) in lab frame:

do a?
dQ  4E2sin*(1e)

where E is the enrgy of the incident electron and 0 is the scattering

angle in the lab frame

e Mott Scattering: Taking into account statistics of identical spinless

particles
do  o2cos’(36)

dQ ~ 4E28n® (39)

e Elastic Scattering of a sp|n-— electron from a pointlike sp|n-— particle

of mass M:

— Scattering of electron from static charge changes angle but not

energy

— For target of finite mass M, final electron energy is
E

E/
1+ 2Esin?(30)

and the four-momentum transfer is

P = —4EE’sin2(%9)
The elastic scattering cross section is:
d a?cos’(36) E’ 2 1
°_ (29 1- 1 tan?(Z6)
dQ 4E2sin*(36) E 2M 2



What Happens if the Target Particles Have Finite Size?

e Suppose the charge distribution is p(r) normalized so that [ p(r)d®r = 1

e The scattering amplitude is modified by a “Form Factor”
F(of) = / drep(r)
So that the cross section is modified by a factor of |F (g?)|?

e Note: Asg? — 0, F(q?) — 1

e We therefore can Taylor expand
. 1
F(g?) = /d3r (1+|q-r’— é((‘1’~F’)2+...) p(r)
e The first - T term vanishes when we integrate

F(o®) = 1_%/rzdrdcosedq’p(f)(qr)zcosze

= 2?n/drd(:oseqzr“cosze
<r’> ,
= 1-—, q/coszedcose
B 1_<r2> , [cos®e]*
- 4 V|73
<r’>,
- 1
6 q

This F is called the “form factor”

; do ,do 21 2 ;
e Thus, if we plot 55 dQ pointlike VS tan“ 58 or vs g° we can measure the size of the
proton

<12>7=0.74+0.24 x 10'3 cm ~ 0.7 fm (McAllister and Hofstadter, 1956)

See the next two pages for relevant plots



Hoffstader and McAllister's Experimental Setup

F1c. 2. Arrapgement of parts in experiments on electron
scattering from s gas target.
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Hoffstader and McAllister’'s Results
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Angular Distributions

e |n addition to total x-section, can look at angular dependence
— For elastic scattering, the angle uniquely determines the energy
of the outgoing electron

— So angle is the only independent variable

e Can write down the most general form of the cross section
do  o?cos’(36) E’
dQ  4e2sin*(10) E

Wo( @)+ 2W4(QP) tar?(56)

e These W are called the proton form factors

e Understanding these two form factors tells us about the structure of

the proton!



Inelastic Scattering

k/
k
q
P, M—> »— W

e Once the proton breaks up, the energy of the outgoing electron is

not determined just from the angle of the scattering

e \We have an additional degree of freedom: the invariant mass of the

hadronic system
e In lab frame: proton 4-momentum is P = (M, 0)

e In any frame, four-momentum transfer is k = K + q and the four-
momentum of the final hadronic system isW = p+q

e Invariants of the problem:
Q> = —¢?=—(k—K)?=2EE/(1— cosh)
P.q = P-(k—k’) = M(E—E’)

where the the last expression in each row is evaluated in the lab

frame.
e Definev=E —E'so P-g=mv and
W2 = (P+q)*=(P-Q?=M?+2P.-q-Q®
= M242Mv - @?



e Elastic scattering corresponds to W2 = P2 = M2 so for elastic scat-

tering Q% = 2Mv

e For inelastic scattering,
rameters

we can define 2 indep dimensionless pa-
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Structure Functions

e We can express the x-section for DIS

do a2 cos?(36) 5 5 5,1

e These are the same two terms as for the elastic scattering, except
that the W now depend on both q2 and W.

e W, and W5, care called the structure functions

e A SLAC-MIT group measured do/dqzdv at 2 angles: 6° and 10°
(see next page for the plots)
— Surprise: Above the resonance region, 0 did not fall with Q2 !

— Like Rutheford scattering, this is evidence for hard structure
within the proton

— To deternine Wy and W, separately, would need to measure at 2
values of E’ and of 6 that give the same q2 and v

— The first exp couldn’t do this: small angle where experiment ran,
W, dominates so study that

— Most important result: W, depends only on the dimensionless
combination X = Q?/2Mv (or 0 = 2Mv/Q?) “scaling”

See the next 2 pages for the experimental results



SLAC-MIT Results: W Distribution for Different ¢
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FIG. 2. Three representative radiatively corrected
spectra at (a) 6=6°, E=7 GeV; (b) 6=6°, E=16 GeV,
and (c) 9=10°, E=17.7 GeV. The ranges of ¢ covered
are (a) 0.2 S S0.5 (GeV/cP; (b) 0.7 S@ <2.6 (GeV/
c); and (¢) 1.6 €¢° €7.3 (GeV/c)’. The elastic peaks
are not shown.



SLAC-MIT Results: Scaling
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What does Scaling Tell Us?

e Supposed there are pointlike partons inside the nucleon

e Let'swork in an “infinite momentum” frame so we can ignore all mass

effects

e In the infinite momentum frame, the roton 4-momentum: P =
(P,0,0,P)

e Visualize a stream of parallel partons each with 4-momentum XxP

where 0 < X < 1; neglect transverse motions of the partons
— Xis the fraction of the proton’s momentum that the parton carries
e Suppose our electron elastically scatters from a parton
(xP+qg)2=—-m? ~ 0
XP2+2xP-q+¢? = 0

Since P2 = M2, if X*M?2 < < q2 then

2P.q = - =Q
X
X~ 2pq” 2Mv

This X is the same X we defined before

Scaling of the Structure Functions is evidence for the presence
of pointlike partons with the proton!



Some comments:

e \We are using an impulse approximation where the scattering occurs

before the partons have a chance to redistribute themselves

e We implicitly assume that after the scattering, the partons that par-
ticipate in the scattering turn into hadrons with probability=1

e This is a lowest order calculation. We will see later that to higher or-
der in perturbatin theory, QCD corrections will introduce slow scaling

violations.



Some Facts About Parton Distribution Functions

e Let f(X) be the prob of finding a parton with mom fraction between
X and X+ dx in the proton. Then because the partons together carry

all the momentum of the proton

/dxxf(x) :/dxefi(x) =1

where ¥ is a sum over all partons in the proton

e We call f(x) the parton distribution function since it tells us the mo-
mentum distribution of the parton within the proton

e |t's natural to associate the partons with quarks, but that's not the

whole story

— Because ep scattering occurs through the electromagnetic inter-
action, it only occurs via scattering with charged partons. If the
proton also contains neutral partons, the EM scattering won'’t
“see” them

— Let’'s assume that the ep scattering occurs through the scattering
of the e off a quark or antiquark

* We saw that the SU(3) description of the proton consists of
2uand 1d quark.

* However we can in addition have any number of g pairs with-
out changing the proton’s quantum numbers

* The 3 quarks (uud) are called valence quarks. The additional
qqQ pairs are called sea or ocean quarks.



